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Received 30 March 1994. in final form 12 July 1994 

Abstrad. The vnrious derivations defined along the tangent bundle projection r in a series 
of papers by Martinez, Cariiiena and Sarlet ase expressed as companenls of a single linear 
connection fr on E, the tangent bundle of the evolution space E = R x TM. This connection is 
equivalent to a system of second+rder ord inw differential equations (SODE) on M. Using the 
linear connection, we calculate the torsion and curvature of (E. a), the components of which 
are expressed in terms of the tensors along f defined by Martinez el al. From these, the full set 
of Bianchi identities ase calculated. We also show that the generalized Jacobi equation, defined 
by several authors, is precisely the horizontal component of the conventional Jacobi equation 
along geodesics of (E, V). Finally, we use this to show that if a Jacobi field of the lift of a 
SODE solution is a certain lift. then it can be extended to a symmetry of the SODE. 

1. Introduction 

In a recent series of papers, Martinez, Cariiiena and Sarlet [ll-131 studied the algebra 
of the derivations of scalar- and vector-valued forms along the tangent bundle projection 
r : T M  + M, generalizing the work of Foulon [lo]. This work has already yielded 
applications: in [ 131, coordinate-invariant conditions were determined for the separability 
of systems of coupled second-order differential equations (SOD@. A more recent paper 
[8] has shown that Douglas’s rather inobvious classification of SODE, used in his solution 
of the inverse problem of Lagrangian mechanics [9]. can be expressed quite clearly and 
economically using the calculus of Martinez er al. However, attempting to generalize 
Douglas’s solution of the inverse problem to more than two dimensions leads to the 
calculation of algebraic conditions referred to by Douglas [9] as altemants. In order to 
recognize which of the conditions determined by the alternants are redundant, one requires 
a list of identities among the various tensor fields defined by Martinez et al. 

This last mentioned requirement was the stimulus for this paper. While the formalism 
defined in [11-13] is compact and has many computational advantages (as evidenced by 
the applications mcntioned), it is not clear from the existing presentations how one might 
produce such a list in a methodical fashion. This leaves open the risk that some of the 
conditions produced for a given problem may in fact be mere identities resulting from the 
geometry, so one is obliged to check by painful coordinate calculations if this is so. 

The main purpose of this paper is to show that, while the calculus of objects defined 
along the tangent bundle projection appears at first to be unfamiliar, it can be interpreted 
as a more economical statement of very familiar Riemannian geometry. Using this fact, 
we can construct identities for use in applications such as those noted above. Further, by 
making precise the relationship between the generalized Jacobi equation, defined by Foulon 
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[IO] and used in [l3,8], and the standard Jacobi equation for Riemannian geodesics, we are 
able to prove a stronger version of the theorem of Martinez et ol concerning symmetries of 
the system of SODE. 

The notion of a dynamical covariant derivative associated with an arbitrary SODE, which 
determines a nonlinear connection on T M ,  was defined in [ 12,131. The idea of nonlinear 
connections for SODE has been studied by Crampin [3-5] and by Morandi eta1 [ 141 amongst 
others, although, in the restricted case of SODE with force terms homogeneous of degree two 
in the velocities, i t  originates with Yano and Ishihara [17]. Generalized Bianchi identities 
for nonlinear connections were studied by Crainpin in [ 5 ] ,  but that paper does not show how 
to incorporate the other covariant derivations defined in the papers by Martinez et al, for 
example, 0; and 0," in the notation of [ 131. Nor is it clear how the several curvature-like 
objects defined along r in [I31 should be interpreted in comparison with the familiar torsion 
and Riemann curvature tensors. 

In this article, we shall demonstrate that by returning to the larger manifold J ' (R ,  M), 
the first jet bundle of smooth maps R --f M, we obtain the objects defined in [13] 
as components of the conventionally defined torsion and Riemann curvature of a linear 
connection on T J 1 ( R ,  M). Moreover, we calculate the full set of Bianchi identities for this 
connection, among which are found the various identities given in [13]. 

Finally, the dynamical covariant derivative, defined in [12], is written in terms of the 
Jacobi endomorphism CJ. This object is named for its role in the Killing equation for 
symmetries of a SODE field, which bears a strong formal resemblance to the equation of 
geodesic deviation familiar from general relativity. In that setting, the field describing the 
separation of neighbouring geodesics is called the Jacobi field and, hence, the name for CJ, 
It will be shown that this equation, in fact, follows directly from the equation of geodesic 
deviation on J1(R, M), so that a symmeny of an SODE is, in fact, a Jacobi field. 

Section 2 contains a brief outline of the material in [I  1-13] in order to fix notation. The 
notation will be that of [13], the introductory section of which provides the most compact 
description of the machinery involved. In section 3, we define the linear connection on 
T J'(R, M )  in terms of the derivations defined in section 2, then calculate the torsion and 
curvature. Section 4 goes on to calculate the two sets of Bianchi identities. Discussion of 
the Jacobi endomorphism and the relationship between symmetries of the SODE and Jacobi 
fields on J ' ( R ,  M) is in section 5, with concluding remarks in section 6. 

2. The Martinez-Carifiena-Sarlet calculus 

In this section, we give only a brief outline of the calculus developed in [ 11,12], following 
the simplified notation of [13]. 

Take M to be a real n-dimensional Cm manifold. T M  is the tangent bundle of M and 
T is the bundle projection T : T M  -+ M .  m e n ,  a vector field V along r is a map (not 
necessarily linear) V : T M  + T M  such that if U E T,M then V ( u )  E T,M. That is to say 
that V preserves the fibres of T M  but not necessarily its vector-space structure. Similarly, 
a I-form (Y along r is a fibre-preserving map ol : T M  + T " M ,  so that @ ( U )  E TTM.  More 
general tensorial objects along T are defined via the appropriate tensor products. In natural 
coordinates, ( x i ,  U') for (an open subset of) TM, V and (Y are written: 

The identity map 2, : T M  + T M  is adistinguished vector field along 5 ,  with coordinate 
expression I ,  = U'&. 
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If E is a Cm manifold, let x ( E )  denote the module of vector fields on E over the 
ring C m ( E )  (since all the r e s u h  i n  this paper are local. we could as well work in a local 
trivialization so that the module is free). The advantage of defining vector fields along r is 
that we are free to choose appropriate lifts T M  + T T M  which define a basis for TTU 
(U open in M) via lifts of a local basis for ~ ( r ) .  the vector fields along r .  Of course the 
degree of advantage depends on the appropriateness of the selected lifts to the problem at 
hand: the formalism is really a general method for using convenient bases. 

An obvious choice of lift is the verticat lift. The vertical subspace V ( T M )  of x ( T M )  
is defined to be the kernel of the projection TI : x ( T M )  -+ x(M) in the usual way 
(maps between vector bundles induce maps between the modules of sections of those 
bundles: no distinction will be made between these). Now let Y E ~ ( r ) .  Then, for 
each p = ( x .  U) E T M ,  the curve 

t H ( x ,  U +tY(p))  t E ( - ] , I )  

is contained in the fibre T,(,,M, so we define the vertical lift to be 

d 
YV = z ( x , u  +tY(p))lr=o 

In natural coordinates ( x . u ) .  if Y = Yi&, then Yv = Y ' L  30' 

Notation. From this point on, I will write X, = & E x ( M )  in the interests of clarity and 
typographical sanity. Consequently, Xy = &. Abusing the notation slightly, X, will also 
denote the coordinate vector field e x ( T M )  with respect to the local natural coordinates 
{ x j ,  d} so that X, &Xi. As a vector field on M. i t  is also a basic vector field along 
r, which is to say it  is defined along T by composition with the projection. Hence, I also 
write X j  = X i  o T. 

In order to motivate the choice of complementary, or horizontal, subspace of T T M ,  first 
recall the definition of the vertical endomorphism S : ,y(TM) -+ x ( T M ) .  A coordinate-free 
definition is available in Morandi et al [14], but in local coordinates 

S = X y @ r * d x j  

Note that im(S) = ker(S) = V ( T M ) ,  yielding the short exact sequence 

0 -+ V ( T M )  x ( T M )  -% V ( T M )  + 0. (1) 

The map i is the inclusion map. The chosen horizontal subspace will be isomorphic to 
V ( T M )  via S and so split this sequence: the question is how to make the split in a 
meaningful way. Since the purpose of the formalism is to simplify calculations involving 
SODE. the associated SOD€ field should ideally play a role. 

Let 

x j  = f ' ( x ,  U) j = I ,  .. . , n  (2)  

be a system of SODE. Then the solution curves of (2)  in M are precisely the projections by 
5 of the integral curves of the SOD€ field 

r = dx, + f j ( x ,  .)x; 
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in TM. The Lie derivative CrS can be shown to have eigenvalues 1 and -1, the eigenspace 
for 1 being V ( T M )  (see [ 141). The eigenspace for -1 is taken to be the horizontal subspace 
and x ( T M )  = V ( T M )  63 N ( T M )  is the required splitting of (1). The horizontal lift 
YH E 1 I ( T M )  of Y E x ( M )  is the unique element Z E 7 f ( T M )  such that r,Z = Y. Then, 
since x ( M )  generates ~ ( s )  over C m ( T M ) ,  the definition of the horizontal lift extends 
uniquely by linearity to ,y(r). In coordinates, X,! = X, - r jXT.  where I have used 
rk  I = -;xY(fk). 

Noration. We will subsequently use the notation r$,,,l Xy . . . Xy(r,?), 

The lifts Y -+ Yv and Y + Y H  are the 'appropriate' lifts to use in studying the SODE 
field r, as the results of [13,2] demonstrate, so we take, as a (possibly local) basis for 
x ( T M ) ,  the lifted natural basis for x ( M )  and, hence, for ~(s); 1x7 ,  Xy&,. 

The derivations 0." and 0: on x (5) are defined by 

[XH, Yv] = (D;Y]" - [ D Y X l H .  

These satisfy a Leibnitz rule if the action of 0'; and Dy on C m ( T M )  is given by 

D:(g )  = X v W  @(g) = X H k )  

They are covariant in that they are Cm(TM)  linear in the subscript argument. In coordinates, 
if Y = yk&. then 

D;,Y = (x7(rk) + yfr;l)xk D&Y = x/(yk)xk 

The action of 0," and DJ on forins and other tensors along r is then defined by duality. 
The exterior derivations dH and dV are defined by applying DH or DV,  respectively, and 
then anti-symmetrizing the arguments in the usual manner of defining a covariant exterior 
derivative. 

Some tensorial objects R,  Rie and 0 can now be defined by 

[XH, Y H I  = IlX, Y I H P  + lR(X, Y ) l V  

where 

[x. YIH = DYY - OFx 

[D;,  DvlZ  = D ; p Z  - DXVxZ + O(X, Y)Z 

[D,". DFIZ = D,x,ylHZ H + DL(,,,)Z + Rie(X, Y ) Z .  

R is a vector-valued 2-furm, Rie is a ( I ,  1)-tensor-valued 2-form and O can be thought of 
as a (1, I)-tensor-valued symmetric bilinear form. In coordinates, 

R(x,, xd = (--x;(rr) + xp(rpx, 
e(xj. xk)xf = r;,x, 
W X j ,  &)XI = (x, (rd - x,"(r,;) + r;r;[ - rgr;,)xm H m  
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It can be shown from the coordinate expression that 

Rie(X, Y ) Z  = -[DgR](X, Y) 

The tension t is a (1, I)-tensor field defined by t = - D H I , ,  or in coordinates by 

t(xj) = (r," - rp )x , .  
If t = 0. the connection rj" is linear and Rie is its Riemann curvature tensor. 

Closely associated with the SOD€ field are the operators V and Q, defined by 

[r, rHi = (vrlH + ( ~ ( r ) ) ~ .  

When evaluated on a function g E Cm(TM),  Vg = r(g). It is also true that 

[r. r V ]  = -yH + { V Y ] ~ .  

In coordinates 

V Y  = (r(y') + yrrL)x, 
qx,)  = (-x,(fm) - r;r; - ryr,"))xm. 

If Q is differentiated as a vector-valued I-form. we can obtain the identities 

d V Q  = 3R dHQ = VR 

It can also be shown that Q ( Y )  = R ( I z ,  Y )  - D;VI,. 

example, [12]) for reasons that will be explored in some detail in section 5. 
The (1, I)-tensor field @ is commonly called the Jacobi endomorphism (see, for 

3. The linear connection on evolution space 

In this section, we show how the various covariant derivatives defined on X(T) in the 
previous section can be defined via components of a linear connection on E ,  the tangent 
bundle of evolution space. Evolution space is a common name for the first jet bundle of 
smooth maps R 4 M, J ' ( R ,  M). We follow Crampin, Prince and Thompson [7] in the 
following discussion of evolution space. 

A point of E = J'(R, M )  is an equivalence class of smooth curves in M. We can 
associate each curve U : R + M with graph r -+ ( f ,u ( t ) ) ,  a curve in R x M .  At each 
fixed f E R, we define the usual jet-bundle equivalence relation on curves defined on a 
neighbourhood o f f :  p and U are defined to be equivalent if p ( t )  = u(t)  and b ( f )  = U([) 

where U ( t )  is the tangent vector to U at t .  The equivalence class of a curve U is referred 
to as its 1-jet, j :  (U) E J' (R.  M). It is clear that for each f E R, the set of equivalence 
classes can be identified with TM, so J1(R, M )  can be identified with R x TM. We shall 
use local coordinates ( t , x ,  U) for R x TM = J 1 ( R , M ) .  

The projection 5 : T M  + M pulls back to a projection R x T M  3 R x M or, 
equivalently, J ' ( R ,  M) + Jo(R,  M). By a slight abuse of notation this projection will 
also be written as T. Given a curve f -+ ( t .  u( t ) )  in R x M, we can define its complete lifi 
to J'(R. M) to be t + (t, U@), b(t)). Note that i t  is a cross section of t. On the other 
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hand, if the graph f + (I, u(t) ,  u(r)) of an arbitrary curve in T M  is the lift of any curve 
in the base space, it must be the lift of its projection by r .  This is the case only if 

V I  E domain@). u ( r )  = u ( t )  

This condition is commonly expressed in terms of the n-contact I-forms (e'] which have 
coordinate representation 

6'" = dr" - u"dr ,  

Now, a section 5 of J (R, M )  + R is the lift of its projection to Jo(R, M )  iff 

( ' B " = O  a = l ,  ..., m. 

Also, since 5 is a section, it has the form 

5 : 1 + 0. u(t) ,  U ( 0 )  

implying that (" dr = d t  (and thereby excusing our notation). 

curves are lifts of curves on R x M iff it satisfies the conditions 
It follows from the above that if r is a vector field on E = J1(R, M), then its integral 

r J d t  = 1 r J B a = O  a = l ,  .... m 

Any such vector field is called an SODE field on E :  we have modified the definition of an 
SODE field on T M  given in section 2 by adding :. In coordinates, we now have 

a . a  a r = - + u  '- + f '(t,  x ,  U)- 
a t  ax) a u J  

Any SODE field on T M  can be defined on E simply by treating t as a parameter 
and adding the $ term. On the other hand, working on E allows us to deal with non- 
autonomous differential equations. We extend the definitions of vector fields and forms along 
r : TM -+ M to the time-dependent case r : R x T M  -+ R x M via a minimalist procedure: 
we simply transfer the machinery of section 2 to each constant time slice ( t )  x T M .  Thus, an 
element X E x ( r )  is a fibre-preserving map X : E + T M  and X(t) = 0. The definitions 
of Xv and XH are then exactly as before within each fibre, so that also XV(t) = XH(f) = 0. 
Hence, we retain dV o dV = 0 and other nice properties of the autonomous situation. Note 
that this is not the philosophy of, for example, [7], where basic forms dxj are systematically 
replaced with the conesponding contact forms 8' = d x j  - u j  dt. For a more comprehensive 
survey of the range of alternatives available when moving to the time-dependent case, see 
Sarlet. Vandecasteele, Cantrijn and Martinez [15]. 

In fact, since we only evaluate the various tensors defined in the autonomous case on 
vectors X v  and XH, defined to be tangenk to It) x TW C E ,  the choice between dxj and 8 )  
is immaterial. However, we will stay with the minimal option for the sake of definiteness 
and simplicity. 

Given the foregoing discussion, the (local) basis {Xy, XF);=, for x ( T M )  defined in 
section 2 extends trivially to a (local) basis {r, Xi", XYJ;=i for x ( E ) .  

Notation. If X E ~ ( r ) ,  we will use the notation XVIH as shorthand for 'Xv, respectively 
XH'. 
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To define a connection on E ,  we make the following ansatz (with X ,  Y E x ( r ) ) :  

VxvY"IH = ( D ~ Y ] v l H  V X s Y V l H  = {DXHy}vlH 
(3) 

erY"lH = {VY}"IH Vrr = 0. 

We also impose that i t  be a linear connection: if Z. W E x ( E )  and g E Cm(E),  then 

exzw = g e z w  G z ( g W )  = Z(g)W + g e z w .  

It can now be seen why we needed to introduce E in place of TM: as defined in section 2,  
[r, X y ,  X;);=, is linearly dependent, which would preclude defining a linear connection 
with the above properties. Note that the list (3)  above does not fully define e. We have 
left e x v r  and e p r  to be determined by a condition on the torsion of e. 

As a first step to the torsion, we recall the following commutation relations: 

rx;, X l l =  0 

[ x j s x k l - -  l k  m Xk I 

[x;,  x,"] = (-x;(r,") + x,"(rj"))x," = [ R ( x j ,  x , ) ) "  

[r. x;] = -xy  + r;xl 
[r. x;] = r,!x," + { ~ ( x , ) ] ~  = 

T ( X ,  Y )  = V x Y  - e,x - [ X ,  Y ]  

icx;, xy, = 0 

v H - r m X V = - D H x .  

+ ( ~ ( x ~ ) ) ~ .  
Then, calculating the torsion from the usual definition 

x ,  Y E X ( E )  

we find 

f ( X ; .  X,") = - ( R ( X j ,  X,))" 

?(r, xy) = -Qxyr + x; 
f(r ,  x ; )  = -VxHr - { ~ ( x ~ ) ) ~ ,  

f(r, z) = o 
We now complete our definition of e by requiring 

v z E x(E). 
As a result of this choice, the only non-zero components of f are given by 

f ( X y ,  X,") = - ( R ( X j .  Xr))' 

and the components of the connection are given by 

Vx; X y  = 0 

Q r X y  = r;x,V 
Qx;r = xH 1 

ex: x;IH = r;xllH 
"xj' = rjx," 

Vxyr = - { o ( x j ) i V .  
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From the above and the definition of r, we have that 

6, = 0, + dexu t (ukri + p ) O X y  

and, hence, we can show that 

01 x,"," = {t(X,)]"IH 

where t is the tension defined in section 2. This demonstrates that the need to replace TM 
with E arises precisely from the nonlinearity of the connection rj on TM, as measured 
by t. 

Since err = 0, we have also that 

6,r = u ~ { ~ p ( x j ) ] v  - (uxr; + f')x;, 

In the case of an autonomous SODE (i.e. afJ/at  = 0). this reduces to 

v i  - a  - = UJ(t(X,))H t ( U V :  + f')(t(Xj)] v . 
( 1  at 

From this point, it is straightforward to calculate the components of the Riemann 
curvature of 0, defined by 

k(X,  Y)Z = 0~6yZ - 6yOxZ - 61x.y1Z X. Y, Z E x ( E ) .  

The components are as follows 

ri(x,y, XY)XY'H = 0 

R x ; ,  x;)r = 0 

&x;. x,")~,"'" = (ecx,, x,)x,I"~~ 
&x;, x;)r = -{D;, O ( X ~ ) } ~  

k (Xy ,  X,")XYIH = (Rie(X,. X X ) X I ) ~ ' ~  

a ( X F ,  X F ) r  = -(dHO(X,. Xk)}' - {R(X,, X,)IH 

&r, x;)x,"I" = o 
&r, x;)r = 

R(r, x 7 ) x F "  = -p ikqx , )  + R(x,, xk)}"IH 
k(r, x7)r = -{VQP(X,))~ - {@(x,))H. 
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4. Bianchi identities 

Having calculated the Riemann curvature and the torsion in the previous section, it is now 
only a matter of tedious calculation to derive the Bianchi identities. The first set of these 
comes from the identity 

&x. Y ) Z  = C ( t ( t ( X ,  Y ) ,  Z)  + [ e x t ] ( Y ,  Z)) v x, Y ,  z E X ( E ) ,  
cyclic cyclic 

Since we know that 

tcx, Y )  E W E )  v x, Y E X(E) 

and that i. vanishes if either of its arguments are vertical, the first term on the right-hand 
side of the identity vanishes. 

Notation. If A is a tensorial object on E (respectively, along r )  and W, . . , , 2 E 
X ( E )  (respectively, x ( r ) ) ,  then we will often write +A(w,x,.  . . , Z) in place of 
[cwA](X..  . . , Z) (respectively, DV'"A(W, X , ,  , . , Z )  in place of D;IHA(X, .. . , Z)), to 
avoid confusion in the case of composed derivatives. 

It can be readily verified that the only non-zero components of are 

Using these, we obtain the first set of Bianchi identities 

dHR(X,, x , ,  X,) = 0 (7) 

(8) 

(9) 

The mysterious factor of three in (9) comes about as a result of both the anti-symmetrization 
of the exterior derivative, giving a factor of two, and the contribution from the torsion. The 
identities (5), (8 )  and (9) are all noted in [ 131. 

dHQ, - V R  = 0 

dv@ - 3R = 0. 

The second set of Bianchi identities result from the identity 

c Ohx, Y, Z )  + m x ,  Y), 2) = 0 v x. Y ,  z E X ( E ) .  (10) 
cyclic 
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We record the following intermediate results in the hope of saving others from tedious 
calculation: 

QiicxY. x;, xy)x,"l" = 0 

Vdtx,v, x;, Xp)X:'H = (DVB(X,, x;. Xk)X,)V'H 

ekcxy. x,;. x;)r = o 

eiicxy, x;, x;)r = -((Dv)*@(xi,  x, ,  xi)]' 

+ECXY, Xy, X;)X,"'" = (D'Rie(X,, X,, Xk)X~)vIH 

ek(X: ,  Xy, X;)r = -{D~,d"@(X,.  XI!))' - (DVR(X,,  X,, Xt) + Rie(Xj, XX)XiJH 

?k(x:. r, x;)x;'" = wx,, xj)xklVIH 
eii(x,V. r. x;)r = - [dvqxi ,  x,nV 

v v  Vd(X7, r, Xy, )X;l" = -10 D @(Xi, XX, X,)+DVR(X,,Xj ,  Xk)+Rie(Xi, xj)Xk)vlH 

Vii(xv, r, x;)r = ( -Dvvqxi ,  x,) + ~ H @ ( x ~ , x , ) J ~  

e i i ( X 7 ,  x;, x:)x,"'" = 0 

Vii(x;. x;. x:)r = o 

Qd(x7, x;, x;)x:l" = pHe(x,. x,, x ~ ) x , ~ ~ I ~  

e f i ( X 7 ,  Xy, X;)r = -[DHDv@(Xi. X,, X,) + B(X,, XX)@(Xj)}' 

e k ( X 7 ,  Xy, Xp)X,"'" = (DHRie(X,, X,, Xn)X,)'IH 

e k ( X p ,  Xy, X F ) r  = (Rie(Xj. Xa)@(X,) - DHdH@(Xi, X,. X,)]'- (DHR(Xi,  XI, Xr)}" 

Vri(xp, r. x;)x;IH = o 
e k x y ,  r, x;)r = -{D~QP(x,, x,)lV 

e&X~, r ,XY)X; ' "  = -(DHDV@(Xi,X,,,Xj)+DHR(X,,Xj,Xx)JVIH 

ed(x:, r, x;)r = -(R(x,, @(xi))  +D~vo(x,,  x,) t ~ D ~ Q ( @ ( X ~ ) ,  xi))' 

O&r,  xy, x;.)x;'" = o 

Vk(r,  xy, xy)r = o 

+&r, x?, x;)xrl" = (ve(xi, X,)X,,)]VIH 

- [DH@(X,, X;))H 
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V&r, x,Y. x;)r = - ( v D ~ o ( x ~ .  x j ) l v  

e@-, X r ,  X y ) X ; I H  = (VRie(Xi, Xj )Xx}" IH 

f ' k - , X ? ,  X y ) r  = - ( V d H @ ( X i ,  Xj))' - ( V R ( X i , X j ) ] H .  

Substituting the above expressions into (IO) yields the following identities (those which 
appeared in the first set are omitted): 

V D B ( X i ,  X j ,  X x )  - D v B ( X j ,  X , ,  X , )  = 0 

Dv R i e ( X i ,  X , i ,  X , )  - D H B ( X j ,  X i ,  X,)  + D H B ( X i ,  X,, X k )  = 0 

H V  H V  D V d H @ ( X i .  X j ,  X , )  - D D @(X,.  X , , X x )  + D D @ ( X I ,  X i , X , )  

- uxi .  x k ) w x j )  + e ( x i ,  xj)o(xx) = o 
d H R i e ( X i , X j , X , ) -  B ( R ( X j , X , ) , X x ) = O  

CyCliC 

5. Geodesic deviation and the Jacohi endomorphism 

In defining the connection e so that = 0, we ensure that the integral curves of r are 
geodesics of f', at least in the sense of being self-parallel (we have not specified a metric 
on E invariant under f' and it is, in fact, possible that no such metric exists). Hence, if 
q E x ( E )  is such that [r, q ]  = 0 on some open set, the definition of k gives, on a possibly 
smaller open set, 

%V,,r = R(r, q)r 

whilechoosing 6 so that f ( r ,  X )  = OV X E x ( E )  implies that t'rq-t'J = 0. Combining 
these two results, we see that 7 is a Jacobi field for an integral curve of r, since it satisfies 
the Jacobi equation or an equation of geodesic deviation: 

(11) 

Note that since k is tensorial, the Jacobi equation is linear along a given integral curve 
y .  Once y is determined, the above equation for 4 can be used to determine large-scale 

- 2  - j j r  V r O -  ( ,W 



6628 G B Byrnes 

behaviour of geodesics, such as the existence of caustics and the Milnor index theorem (see 
Spivak [ 161). Although some steps have been taken elsewhere to extend such techniques 
to general SODE [6 ] ,  we me not aware of an explicil Jacobi equation having been exhibited 
elsewhere. Nor is it  immediately clear that equation (11) is the appropriate tool: while 
every integral curve of r is a geodesic, the converse is clearly false. There is one integral 
curve of r through each point p in E ,  whereas the geodesics through p are parametrized 
by the unit sphere in T,E. We will show below that the extra freedom can be constrained 
by a simple condition on q.  

There is a known Jacobi equation for an arbitrary SODE. Martinez, CariEena and Sarlet 
[ 121 note that the equation 

V'U =-@(U) U E X(r) 

is 'reminiscent of the concept of a Jacobi field' and describe it as a generalized Jacobi 
equation. In fact. it is closely related to (1  1). 

Lemma 1. Let y be an integral curve of r and let 17 E x(E) have decomposition 
IJ = hr + uH + t v ,  u , t  E x ( r )  and h E Cm(E). Then is a Jacobi field for y if 
and only if 

r z ( h )  = 0 (Vzu + O(U))( ,  = 0 

Proof. Substitute the decomposition of 17 into (1 1) and use the definitions 

(Vz$ + @ ( p )  + VO(o))/], = 0. 

R(r,uH)r = - I V Q ( U ) ] ~  - 

kr,  cV)r = - I O ( O I ~  

and equate the components to obtain the result. 

rJ = U H +  SV. 

0 

Since only transverse Jacobi fields are of interest, we will henceforth set h = 0 so that 

Lemma 2.  I f  
along y .  

Proof. 

= uH + (Vu)' and V2u + @ ( U )  = 0 along y .  then IJ is a Jacobi field 

Substituting $ = Vu into the second condition of lemma 1 

(V3U + Q(V0)  + V@(u))l, = v (0% + @ ( U ) )  I, = 0. U 

Note that the converse of lemma 2 is certainly false: there will be solutions of ( I  I )  with 

Also, note that in the notation of [ 11,12] 
rJ = t v .  

Jru = uH + (VU)'. 

From the two lemmas, we have 

Theorem 3. 
only if 

Let U E ~ ( r ) .  Then Jj-0 is a Jacobi field for an integral curve y of r if and 

(VZO + @(u))ly = 0. 

Martinez er al have shown that V2u + @ ( U )  = 0 iff Jru is a symmetry of r. In fact 
it is possible to strengthen their result: 
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Lemma 4. Let q be any vector field on E such that [r, q ]  = 0 and q = uH + Fv.  Then 
q = J r u  and V3u + @ ( U )  = 0. 

Proof. It suffices to calculate 

[r, SI = {vc - o(o)tv + {vu - elH = 0. 

This implies that 

0 

Theorem 5. If Jru is a Jacobi field for an integral curve y of r, then Jru is tangent to 
the transverse curves of a 1-parameter family of integral curves of r and is the restriction 
to y of a symmetry of r. 
Proof. Let p be a point on y .  With 6 > 0, let ci : [ - -E,E]  -+ E be a curve such 
that a(0) = p and dci(s)/dsl,,o = Jru(p).  Then, construct the integral curve ys of r 
through each point (~(s). We have constructed a I-parameter family of integral curves 
containing y .  so the transverse vector field 2 = dy,/ds is a symmetry of F, This is 
equivalent to [r, Z] = 0. so from the lemma there exists p E x ( r )  such that 2 = Jrp and 
V2p + Q ( p )  = 0. However, from the construction 

V q = uH + ( V u )  = J r u  V'U + @ ( U )  = 0. 

pH@) + ( V P ) ~ ( P )  = Jru(p) = oH(p) + ( V ~ ) " ( P )  

so U and p satisfy the same linear SODE along y and have the same value and first derivative 
at p.  Thus, ( p  - u)lr = 0, so we have proved that JrU is tangent to the transverse curves 
of a 1-parameter family of integral curves. 

It remains to show that Z can be extended to a symmetry in a tubular neighbourhood 
of y .  This will be done by producing a local foliation of E by I-parameter families of 
integral curves. 

Denote the two-dimensional submanifold defined by the 1-parameter family of curves 
above by E2. Let N be a (2n - 1)-dimensional submanifold transverse to E2 and to r with 
the point E2 n N labelled by q .  We also require (without loss of generality) that no integral 
curve of r intersect N more than once. Let W be any smooth map 

W : N + T E  

which satisfies 

w(q) = z(q) w(a) pi T N  W ( U )  z h r  U E N A E R. 

N parametrizes a (2n - ])-parameter family of integral curves: denote by yo that which 
passes through a E N .  

The vector W(a) has a decomposition W ( a )  = BH + q", so if p E X ( T )  satisfies 

p ( a )  = t V d a )  = v 

then 

W ( 4  = J ,p (a ) .  
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The above conditions on p constitute initial conditions for a solution of the Jacobi equation 

(V2P + Q ( P ) ) l y ,  = 0 

along yo. It follows from lemma 2 that J r p  is a Jacobi field along yu, so we may use 
the first part of the proof to construct a I-parameter family of integral curves through yo, 
&(a). The transverse field in each of these families is a Jacobi field for the curves of the 
family. Since r r$ T N  and W ( a )  $i T N ,  &(a) is transverse to N for each a E N .  

Now suppose that E2(a) n Ez(6) # 0 with a. 6 E N .  Then E&) n Ez(6 )  must be an 
integral curve of I: (as r is non-singular) passing through both a and b .  Hence, a = 6 
and we have shown that N parametrizes a local foliation of E by the 1-parameter families 
Ez(c). On each leaf &(a), the transverse field 2, satisfies [r, Z,] = 0 (from the first 
part of the pro00 and 2, depends smoothly on a, since it is the solution of a linear SODE 
with smooth parameter dependence of the coefficient functions. Hence, we have a smooth 

0 

The point of the theorem is to show that a Jacobi field for y is not simply a variation 
through geodesics, which is well known [16], but is in fact a variation through those 
geodesics of 9 which are also integral curves of r. 

The difference between theorem 5 and that proved by Martinez et al is that in 1121, 
V2u + @ ( U )  = 0 is required to hold on a tubular neighbourhood of y :  here we have shown 
that if the condition holds only on y there is an extension p of U to a tubular neighbourhood 
such that p is a symmetry of r. 

Proposition 6. 
r o y through solution curves of the SODE in R x M. 

Proof. The forward implication is immediate on projecting the family of integral curves. 
To prove the converse, note that Jru = uJXj + r(uj)Xy.  Thus, if U is a variation tangent 
to a family of solution curves, J p  will be a variation through the complete lift of that 

extension 2 = J r p  which is a symmetry of r in a tubular neighbourhood of y .  

Jru is a variation of y through integral curves of P i f f  U is a variation of 

family. 0 

Note that we have two sets of symmetries available at this point: symmetries of r as an 
SOD€ field on E ,  which is to say symmetries of the SODE, and symmetries of the geodesic 
equation for the connection fi on E .  This last equation itself defines a SODE field on T E  
(rather than on E )  and has the form fib& = 0 with p : R -+ E.  To summarize the relation 
between these two sets. we state the following corollary. 

Corollary 7. 
the following statements are true. 

If fi is the linear connection on T E  associated with the SODE field r, then 

(i) Every symmetry of r is a symmetry of 
(ii) There exist symmetries of ? b / i  = 0 along the integral curves y of r which are not 

= 0. 

symmetries of r. 
Proof. Since every integral curve of r is a geodesic with respect to fi on E ,  a symmetry 
of r is tangent to a family of solution curves of Vb& = 0. The first part (i) then follows 
by applying proposition 6 one level up. 

We noted after lemma 2 that there are solutions IJ to the Jacobi equation ~ ; I J  = &r, q)r 
with IJ = for some e defined along the projection soy of y to a solution curve in R x M .  
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It is a classical result (see [ 161) that any Jacobi field generates a variation through geodesics 
and so by theorem 5 extends to a symmetry of the geodesic equation. On the other hand, 
q can be a symmetry of r only if there is a solution o of the generalized Jacobi equation 
which lifts to q.  i.e. J p  = uH + (00)” = q .  Clearly, if q = 6’ then there is no such o 
so 6 is not a symmetry of r. 0 

Definition I .  We will say that u E X(r) is a generalizedJacobifield along the projection 
r o y if Jro is a Jacobi field along y .  

It is then natural to define conjugate points along r o y  as points r o y(a), i o y ( b )  where 
some generalized Jacobi field B. not identically zero, satisfies o(y(a) )  = O  ( y ( b ) )  = 0. At 
the conjugate points Jro # 0, otherwise Vu would vanish coincidentally with O, implying 
that U = 0. In other words. at conjugate points, Jro is vertical, corresponding to a variation 
in direction rather than position of curves in  R x M ,  as one would expect. 

6. Discussion 

The principal aim of this paper was to show that the formal calculus of tensor fields along 
the tangent bundle projection, as defined by Martinez et al, is simply a more economical 
notation for ordinary tensor calculus on evolution space E = R x T M .  By choosing an 
appropriate linear connection on E. all the geometric objects arising from the nonlinear 
connection on R x M are recovered. Consequently, we are able to derive a set of identities 
between the objects defined i n  [ll-131 by calculating the Bianchi identities for the curvature 
of the linear connection. 

In section 5, it is shown that the generalized Jacobi equation for symmetries of SODE, 
as defined by Foulon [lo], Martinez e t a l  [11-13] and others is precisely the horizontal 
component of the classical Jacobi equation for geodesics on E. The horizontal component 
is shown to imply the vertical component in the case where the Jacobi field is the generator 
of a variation through the complete lift of a family of curves in the base R x M. This 
relationship between the classical and generalized Jacobi equations allows us to generalize 
a result of Martinez ef  a1 in theorem 5 :  if the generalized Jacobi equation is satisfied on a 
solution curve of the SODE. there is an extension of its complete lift to a symmetry of the 
SODE field r in a tubular neighbourhood of the lift of the solution curve. 

At this stage, we can identify three directions deserving further investigation. The first 
is to extend the compact notation used in [ 11-13] to higher-order jet bundles, in the hope 
of carrying forward a classification such as in [I31 for higher-order systems of differential 
equations. It is not at all clear how this could be done from the standpoint of [ l l .  121, but 
the approach used in this paper makes the direction clear. This has now been completed [l] .  

A second possibility is to use the geodesic property of lifted solutions of the SODE to 
write a Raychaudhuri equation (see; for example, [ 6 ] )  for an arbitrary SODE. To do this 
in the usual way, writing the rate of change of expansion in terms of rotation and shear, 
would require a metric on E preserved by the linear connection e. In the absence of such 
a metric, it is still possible to write a Raychaudhuri-like equation via a decomposition into 
diagonal and trace-free components. This issue will be addressed in a future publication. 

to calculate secondary 
invariance classes of projective transformations of E .  Since the solutions of the SODE are 
contained in the set of geodesics of *, which are invariant under projective transformations, 
this could reveal the large-scale structure of the solutions of a given SODE. Related to this, the 

The third direction lies from using the linear connection 
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identification of the generalized Jacobi equation as a component of the conventional Jacobi 
equation opens the possibility of establishing an analogue of the Morse index theorem for 
solutions of an arbitray SODE. 
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